Therapeutic cloning involves creating a cloned embryo for the sole purpose of producing embryonic stem cells with the same DNA as the donor cell. These stem cells can be used in experiments aimed at understanding disease and developing new treatments for disease. To date, there is no evidence that human embryos have been produced for therapeutic cloning.
The richest source of embryonic stem cells is tissue formed during the first five days after the egg has started to divide. At this stage of development, called the blastocyst, the embryo consists of a cluster of about 100 cells that can become any cell type. Stem cells are harvested from cloned embryos at this stage of development, resulting in destruction of the embryo while it is still in the test tube.
In November 2007, using a new cloning method that removes the egg's nucleus without dyes or ultraviolet light, researchers produced the first primate embryonic stem cells. The work involved transferring the nucleus of a skin cell from a male rhesus monkey into the nucleus-free egg of a female rhesus monkey. These embryonic stem cells did not develop into a whole monkey, and researchers said their work was aimed at therapeutic applications. However, the research shows that, with some adjustments, the techniques used to make whole copies of other animals may also work in primates.
Researchers hope to use embryonic stem cells, which have the unique ability to generate virtually all types of cells in an organism, to grow tissues in the laboratory that can be used to grow healthy tissue to replace injured or diseased tissues. In addition, it may be possible to learn more about the molecular causes of disease by studying embryonic stem cell lines from cloned embryos derived from the cells of animals or humans with different diseases.
Many researchers think it is worthwhile to explore the use of embryonic stem cells as a path for treating human diseases. However, some experts are concerned about the striking similarities between stem cells and cancer cells. Both cell types have the ability to proliferate indefinitely and some studies show that after 60 cycles of cell division, stem cells can accumulate mutations that could lead to cancer. Therefore, the relationship between stem cells and cancer cells needs to be more clearly understood if stem cells are to be used to treat human disease.
Reference :- https://www.genome.gov/25020028#al-12
https://namgene-com.webnode.in/